Homoplantaginin attenuates high glucose‐induced vascular endothelial cell apoptosis through promoting autophagy via the AMPK/TFEB pathway

Author:

Fan Lili1,Zhang Xueying1,Huang Yihai1,Zhang Baobao1,Li Wenjing1,Shi Qingru1,Lin Yining1ORCID,Wu Feihua1ORCID

Affiliation:

1. School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China

Abstract

AbstractVascular endothelial cell (VEC) injury is a key factor in the development of diabetic vascular complications. Homoplantaginin (Hom), one of the main flavonoids from Salvia plebeia R. Br. has been reported to protect VEC. However, its effects and mechanisms against diabetic vascular endothelium remain unclear. Here, the effect of Hom on VEC was assessed using high glucose (HG)‐treated human umbilical vein endothelial cells and db/db mice. In vitro, Hom significantly inhibited apoptosis and promoted autophagosome formation and lysosomal function such as lysosomal membrane permeability and the expression of LAMP1 and cathepsin B. The antiapoptosis effect of Hom was reversed by autophagy inhibitor chloroquine phosphate or bafilomycin A1. Furthermore, Hom promoted gene expression and nuclear translocation of transcription factor EB (TFEB). TFEB gene knockdown attenuated the effect of Hom on upregulating lysosomal function and autophagy. Moreover, Hom activated adenosine monophosphate‐dependent protein kinase (AMPK) and inhibited the phosphorylation of mTOR, p70S6K, and TFEB. These effects were attenuated by AMPK inhibitor Compound C. Molecular docking showed a good interaction between Hom and AMPK protein. Animal studies indicated that Hom effectively upregulated the protein expression of p‐AMPK and TFEB, enhanced autophagy, reduced apoptosis, and alleviated vascular injury. These findings revealed that Hom ameliorated HG‐mediated VEC apoptosis by enhancing autophagy via the AMPK/mTORC1/TFEB pathway.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3