Influence of carbon side chain length on the in vivo pharmacokinetic and pharmacodynamic characteristics of illicitly manufactured fentanyls

Author:

Canfield Jeremy R.1,Sprague Jon E.1ORCID

Affiliation:

1. The Ohio Attorney General's Center for the Future of Forensic Science Bowling Green State University Bowling Green Ohio USA

Abstract

AbstractSince 2016, illicitly manufactured fentanyls and fentanyl analogs (referred to as IMFs) have contributed to an increase in drug overdoses. Although fentanyl has been characterized and evaluated extensively in animals and humans, many of the clandestinely synthesized analogs of fentanyl have not and users may unknowingly ingest these IMFs leading to overdose and potentially death. The pharmacodynamic (PD) and pharmacokinetic (PK) properties of four IMFs and fentanyl were evaluated in Sprague–Dawley rats. A 300‐μg/kg subcutaneous dose of each compound (fentanyl, acetylfentanyl, cyclopropylfentanyl, butyrylfentanyl, and valerylfentanyl) was given. PD parameters were measured using a tail flick meter and core body temperature. Blood was drawn to evaluate PK parameters utilizing liquid chromatography tandem mass spectrometry (LC–MS/MS). Fentanyl displayed the greatest and longest lasting analgesia with a tail flick response of 10 s (the maximum cutoff). Additionally, fentanyl produced an average −4.9°C in core body temperature resulting in the greatest decrease in core body temperature. Acetylfentanyl, with the shortest carbon side chain, displayed the shortest T½, and lowest AUC and Cmax and resulted in an increase in body temperature. There were no other PK differences among the IMFs assessed. As IMFs are commonly seen on the streets and can pose significant risks to users (although these risks do depend on other factors such as dose and route of administration), there is a benefit to having the pharmacological properties of these compounds characterized to better understand the potential harm to humans.

Publisher

Wiley

Subject

Spectroscopy,Pharmaceutical Science,Environmental Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3