Information retrieval on Turkish texts

Author:

Can Fazli,Kocberber Seyit,Balcik Erman,Kaynak Cihan,Ocalan H. Cagdas,Vursavas Onur M.

Abstract

AbstractIn this study, we investigate information retrieval (IR) on Turkish texts using a large‐scale test collection that contains 408,305 documents and 72 ad hoc queries. We examine the effects of several stemming options and query‐document matching functions on retrieval performance. We show that a simple word truncation approach, a word truncation approach that uses language‐dependent corpus statistics, and an elaborate lemmatizer‐based stemmer provide similar retrieval effectiveness in Turkish IR. We investigate the effects of a range of search conditions on the retrieval performance; these include scalability issues, query and document length effects, and the use of stopword list in indexing.

Publisher

Wiley

Reference71 articles.

1. Indexing strategies for Swedish full text retrieval under different user scenarios

2. Large-scale cluster-based retrieval experiments on Turkish texts

3. Anderson S. &Cavanagh J.(2006).Report on the top 200 corporations.

4. December 2000. Retrieved October 9 2006 fromhttp://www.corporations.org/system/top100.html

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Foundations to GPT in Text Classification: A Comprehensive Survey on Current Approaches and Future Trends;Foundations and Trends® in Information Retrieval;2025

2. Categorization of Turkish Text Documents Using Extreme Learning Machine;2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP);2024-09-21

3. Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers;Information Systems;2024-03

4. Impact of Tokenization on Language Models: An Analysis for Turkish;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-03-25

5. Social media analytical CRM: a case study in a bank;Journal of Intelligent & Fuzzy Systems;2023-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3