Hsa_circ_0057105 modulates a balance of epithelial‐mesenchymal transition and ferroptosis vulnerability in renal cell carcinoma

Author:

Cen Junjie1,Liang Yanping2,Feng Zihao1,Chen Xu1,Chen Jinlong1,Wang Yinghan1,Zhu Jiangquan1,Xu Quanhui1ORCID,Shu Guannan1,Zheng Wenbin3,Liang Hui4,Wang Zhu4,Deng Qiong4,Cao Jiazheng5,Luo Junhang16ORCID,Jin Xiaohan1,Huang Yong13ORCID

Affiliation:

1. Department of Urology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou People's Republic of China

2. Department of Laboratory Medicine The First Affiliated Hospital of Sun Yat‐sen University Guangzhou People's Republic of China

3. Department of Emergency The First Affiliated Hospital of Sun Yat‐sen University Guangzhou People's Republic of China

4. Department of Urology Affiliated Longhua People's Hospital Southern Medical University Shenzhen People's Republic of China

5. Department of Urology Jiangmen Central Hospital Jiangmen People's Republic of China

6. Institute of Precision Medicine The First Affiliated Hospital of Sun Yat‐sen University Guangzhou People's Republic of China

Abstract

AbstractBackgroundThe incidence of renal cell carcinoma (RCC) has increased in recent years. Metastatic RCC is common and remains a major cause of mortality. A regulatory role for circular RNAs (circRNAs) in the occurrence and progression of RCC has been identified, but their function, molecular mechanisms, and potential clinical applications remain poorly understood.MethodsHigh‐throughput RNA sequencing was used to explore the differential expression of circRNAs and their related pathways in RCC patients. Transwell and CCK‐8 assays were used to assess the function of hsa_circ_0057105 in RCC cells. The clinical relevance of hsa_circ_0057105 was evaluated in a cohort of RCC patients. The hsa_circ_0057105 regulatory axis was defined using RNA pull‐down, luciferase reporter assays, and fluorescence in situ hybridization assays, and the in vivo effect of hsa_circ_0057105 was validated using animal experiments.ResultsSingle‐sample gene set enrichment analysis and correlation analysis of RNA‐seq data showed that hsa_circ_0057105 was potentially oncogenic and may serve to regulate epithelial‐mesenchymal transition (EMT) activation in RCC. Hsa_circ_0057105 expression was associated with advanced TNM stages and was an independent prognostic factor for poor RCC patient survival. Phenotypic studies show that hsa_circ_0057105 can enhance the migration and invasion abilities of RCC cells. Further, hsa_circ_0057105 was shown to inhibit the expression of miR‐577, a miRNA that regulated the expression of both COL1A1, which induced EMT activation, and VDAC2, which modulated ferroptosis sensitivity. The dual regulatory roles of hsa_circ_0057105 on EMT and ferroptosis sensitivity were verified using rescue experiments. Animal studies confirmed that hsa_circ_0057105 increased the metastatic ability and ferroptosis sensitivity of RCC cells in vivo.ConclusionsIn RCC, hsa_circ_0057105 regulates COL1A1 and VDAC2 expression through its sponge effect on miR‐577, acting like a ‘double‐edged sword’. These findings provide new insight into the relationship between EMT and ferroptosis in RCC and provide potential biomarkers for RCC surveillance and treatment.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3