Biomechanical Stimulation of Muscle Constructs Influences Phenotype of Bone Constructs by Modulating Myokine Secretion

Author:

Suresh Kumar Harshini1,Barnett Edwina N.1,Fowlkes John L.23,Kalaitzoglou Evangelia23ORCID,Annamalai Ramkumar T.1ORCID

Affiliation:

1. Department of Biomedical Engineering University of Kentucky Lexington KY USA

2. Barnstable Brown Diabetes Center Lexington KY USA

3. Department of Pediatrics University of Kentucky Lexington KY USA

Abstract

ABSTRACTDiabetes is a chronic metabolic disorder that can lead to diabetic myopathy and bone diseases. The etiology of musculoskeletal complications in such metabolic disorders and the interplay between the muscular and osseous systems are not well understood. Exercise training promises to prevent diabetic myopathy and bone disease and offer protection. Although the muscle‐bone interaction is largely biomechanical, the muscle secretome has significant implications for bone biology. Uncoupling effects of biophysical and biochemical stimuli on the adaptive response of bone during exercise training may offer therapeutic targets for diabetic bone disease. Here, we have developed an in vitro model to elucidate the effects of mechanical strain on myokine secretion and its impact on bone metabolism decoupled from physical stimuli. We developed bone constructs using cross‐linked gelatin, which facilitated osteogenic differentiation of osteoprogenitor cells. Then muscle constructs were made from fibrin, which enabled myoblast differentiation and myotube formation. We investigated the myokine expression by muscle constructs under strain regimens replicating endurance (END) and high‐intensity interval training (HIIT) in hyperglycemic conditions. In monocultures, both regimens induced higher expression of Il15 and Igf1, whereas END supported more myoblast differentiation and myotube maturation than HIIT. When co‐cultured with bone constructs, HIIT regimen increased Glut4 expression in muscle constructs more than END, supporting higher glucose uptake. Likewise, the muscle constructs under the HIIT regimen promoted a healthier and more matured bone phenotype than END. Under static conditions, myostatin (Mstn) expression was significantly downregulated in muscle constructs co‐cultured with bone constructs compared with monocultures. Together, our in vitro co‐culture system allowed orthogonal manipulation of mechanical strain on muscle constructs while facilitating bone‐muscle biochemical cross‐talk. Such systems can provide an individualized microenvironment that allows decoupled biomechanical manipulation, help identify molecular targets, and develop engineered therapies for metabolic bone disease. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institute of General Medical Sciences

Orthopaedic Trauma Association

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3