Affiliation:
1. School of Mechanical and Electrical Engineering Central South University Changsha 410083 China
2. State Key Laboratory of High Performance Complex Manufacturing Central South University Changsha 410083 China
3. Rongcheng Huadong Metal-forming Machinery Co. Ltd. Rongcheng 264300 China
Abstract
Deformation behavior of an Al–Cu–Mn–Fe–Zr alloy is investigated by plane strain compression tests at a warm deformation region. The flow stress first increases and then keeps steady, and the flow stress increases with reducing temperature or raising strain rate. However, the influence of strain rate on flow stress is weak at 100 and 150 °C. The dynamic recovery (DRV) mechanism is the dominant mechanism to balance the work hardening, and a larger number of dislocations are consumed at low strain rates. So, the deformed grains are difficult to reach the critical strain for dynamic recrystallization (DRX). When the strain rate is relatively high, the critical strain can be reached in a short time, which promotes the process of DRX. In addition, an improved unified constitutive model is built based on the evolution of dislocation density. The predicted flow stresses are in a close agreement with the measured results, proving that the built model can nicely reproduce the flow behavior.
Funder
National Natural Science Foundation of China
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献