Influence of Heat Treatment on Microstructure Evolution and Yield Surfaces of Ni/PU Hybrid Foams

Author:

Fries Michael1,Schäfer Florian2,Janka Oliver3,Schmauch Jörg4,Jung Anne1ORCID

Affiliation:

1. Protective Systems Helmut Schmidt University/University of the Federal Armed Forces Hamburg Am Stadtrand 50 22047 Hamburg Germany

2. Material Science and Engineering Saarland University Campus D2.3 66123 Saarbrücken Germany

3. Inorganic Solid State Chemistry Saarland University Campus C4.3 66123 Saarbrücken Germany

4. Experimental Physics Saarland University Campus D2.2 66123 Saarbrücken Germany

Abstract

Metal foams are characterized by low weight, high resource efficiency, high relative stiffness, and exceptional energy absorption capacity under compressive load. Nickel/polyurethane (Ni/PU) hybrid foams consist of an open‐cell polyurethane foam coated with a layer of nickel produced by electrochemical deposition. The coating of the PU foams takes place in a flow reactor, in which the electrolyte is pumped through the foam at a defined flow velocity. The macromechanical properties of foam‐like structures depend on the structure of the skeleton, the inherent material properties and, in the case of Ni/PU hybrid foams, the properties of the electrochemically generated nickel layer. To influence their mechanical properties, the Ni/PU hybrid foams are subjected to heat treatment. In the given experimental setup, the parameters flow velocity, temperature, and duration of the heat treatment are each investigated at two different levels. Thus, interactions between the initial microstructure and the type of heat treatment are evaluated by means of X‐ray diffraction (XRD) and electron backscatter diffraction (EBSD) measurements. Interactions between initial mechanical properties and heat treatment are investigated by uniaxial compression tests and superimposed compression‐torsion tests. The knowledge gained is used to control the macromechanical properties of the hybrid foam.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3