Soil enzyme profile analysis for indicating decomposer micro‐food web

Author:

Xing Wen12ORCID,Hu Ning1,Li Zhongfang1,Feng Liangshan3,Zhang Weidong4,Du Preez Gerhard5,Zhang Huimin6,Li Dongchu6,Lu Shunbao7,Chang Scott X.8,Zhang Qingwen2ORCID,Lou Yilai2ORCID

Affiliation:

1. Guangxi Key Laboratory of Health Care Food Science and Technology, School of Food and Biological Engineering Hezhou University Hezhou China

2. Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing China

3. Liaoning Academy of Agricultural Sciences Shenyang China

4. Institute of Applied Ecology Chinese Academy of Sciences Shenyang China

5. Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa

6. Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China

7. Jiangxi Normal University Nanchang China

8. Department of Renewable Resources University of Alberta Edmonton Alberta Canada

Abstract

AbstractHighly diverse exoenzymes mediate the energy flow from substrates to the multitrophic microbiota within the soil decomposer micro‐food web. Here, we used a “soil enzyme profile analysis” approach to establish a series of enzyme profile indices; those indices were hypothesized to reflect micro‐food web features. We systematically evaluated the shifts in enzyme profile indices in relation to the micro‐food web features in the restoration of an abandoned cropland to a natural area. We found that enzymatic C:N stoichiometry and decomposability index were significantly associated with substrate availability. Furthermore, the higher Shannon diversity index in the exoenzyme profile, especially for the C‐degrading hydrolase, corresponded to a greater microbiota community diversity. The increased complexity and stability of the exoenzyme network reflected similar changes with the micro‐food web networks. In addition, the gross activity of the enzyme profile as a parameter for soil multifunctionality, effectively predicted the substrate content, microbiota community size, diversity, and network complexity. Ultimately, the proposed enzymic channel index was closely associated with the traditional decomposition channel indices derived from microorganisms and nematodes. Our results showed that soil enzyme profile analysis reflected very well the decomposer food web features. Our study has important implications for projecting future climate change or anthropogenic disturbance impacts on soil decomposer micro‐food web features by using soil enzyme profile analysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3