Development and characterization of microwave‐processed linear low‐density polyethylene based sisal/jute hybrid laminates

Author:

Maurya Hari Om1,Kumar Gaurav2ORCID,Prasad Lalta1ORCID,Gupta Pranjal3ORCID

Affiliation:

1. Department of Mechanical Engineering National Institute of Technology Srinagar (Garhwal) India

2. Department of Mechanical Engineering National Institute of Technology Rourkela Rourkela India

3. Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Roorkee India

Abstract

AbstractNatural fiber‐reinforced composites are gaining significant popularity for their biodegradability and eco‐friendliness. Fiber modifications and hybridization have been used to address issues like hydrophilicity and fiber inhomogeneity. However, efficient manufacturing is still a challenge for natural fiber‐reinforced polymer composites. The present study explores the potential of microwave processing of hybrid laminates composed of sisal and jute fibers. The laminates, consisting of linear low‐density polyethylene (LLDPE) as matrix and sisal and jute as reinforcement materials were subjected to microwave processing at specific power, time, frequency, and loads. Four types of laminates with different stacking sequences: sisal‐sisal‐sisal (SSS), sisal‐jute‐sisal (SJS), jute‐sisal‐jute (JSJ), and jute‐jute‐jute (JJJ) were developed. The developed composites showed ~3% void content, with the SJS and JSJ composite having the least and highest void content, respectively. The SJS composite showed the highest tensile and flexural strength of 15.27 and 20.40 MPa, respectively, out of all the configurations and an improvement of 42% and 85% over pure LLDPE. Hybrid composites having high‐strength fibers in the skin layer exhibited superior mechanical properties. Microscopic examination of the fractured specimens revealed that fiber pull‐out and fiber breakage were the primary failure mechanisms of failure. Lateral failure due to delamination between matrix and fiber was predominant with grip and gauge regions as frequent failure points. The incorporation of sisal and jute fiber reinforcement into the polymers doesn't change the thermal stability of the fabricated composites significantly. The above results show that microwave‐assisted processing is a promising method for producing natural fiber‐reinforced hybrid polymer composites.Highlights Development of hybrid laminates using microwave energy at 2.45 GHz. The mechanism of microwave‐based processing of polymer composites has been discussed. Effect of layering sequence on mechanical and thermal properties of the developed composite. Assessment of tensile strength with morphology, flexural strength and thermo‐gravimetric analysis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3