Prognostic model for aneurysmal subarachnoid hemorrhage patients requiring mechanical ventilation

Author:

Wan Xichen1,Wu Xiao1,Kang Junwei2,Fang Longjun2,Tang Yunliang2ORCID

Affiliation:

1. Department of Neurosurgery First Affiliated Hospital of Nanchang University Nanchang 330006 People's Republic of China

2. Department of Rehabilitation Medicine First Affiliated Hospital of Nanchang University Nanchang 330006 People's Republic of China

Abstract

AbstractObjectiveAneurysmal subarachnoid hemorrhage (aSAH) is a major cause of death and disability worldwide and imposes serious burdens on society and individuals. However, predicting the long‐term outcomes in aSAH patients requiring mechanical ventilation remains challenging. We sought to establish a model utilizing the Least Absolute Shrinkage and Selection Operator (LASSO)‐penalized Cox regression to estimate the prognosis of aSAH patients requiring mechanical ventilation, based on regularly utilized and easily accessible clinical variables.MethodsData were retrieved from the Dryad Digital Repository. Potentially relevant features were selected using LASSO regression analysis. Multiple Cox proportional hazards analyses were performed to develop a model using the training set. Receiver operating characteristics and calibration curves were used to assess its predictive accuracy and discriminative power. Kaplan–Meier and decision curve analyses (DCA) were used to evaluate the clinical utility of the model.ResultsIndependent prognostic factors, including the Simplified Acute Physiology Score 2, early brain injury, rebleeding, and length of intensive care unit stay, were identified and included in the nomogram. In the training set, the area under the curve values for 1‐, 2‐, and 4‐year survival predictions were 0.82, 0.81, and 0.80, respectively. In the validation set, the nomogram exhibited excellent discrimination ability and good calibration. Moreover, DCA demonstrated that the nomogram was clinically beneficial. Finally, a web‐based nomogram was constructed (https://rehablitation.shinyapps.io/aSAH).InterpretationOur model is a useful tool for accurately predicting long‐term outcomes in patients with aSAH who require mechanical ventilation and can assist in making individualized interventions by providing valuable information.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

Wiley

Subject

Neurology (clinical),General Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3