A stepwise surface ionization method for ion mobility spectrometry

Author:

Lin Jianhua12ORCID,Gao Xiaoguang1,Jia Jian1,He Xiuli1

Affiliation:

1. State Key Laboratory of Transducer Technology, Aerospace Information Research Institute Chinese Academy of Sciences Beijing China

2. School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China

Abstract

AbstractRationaleThe detection of organic nitrogen compounds in exhaled breath is expected to provide an early warning of diseases such as kidney disease. Detecting these trace disease markers in exhaled breath with complex composition and high moisture content is a challenge. Surface ionization (SI) shows a highly selective ionization of organic nitrogen compounds, and it is a good candidate for breath analysis combined with ion mobility spectrometry (IMS).MethodsA stepwise SI method of low‐temperature adsorption/high‐temperature ionization was proposed, and trimethylamine (TMA) was detected when combined with an ion mobility spectrometer. TMA at different concentrations and humidity levels and spiked in human breath was detected to evaluate the method's properties.ResultsTMA with concentrations from 2 to 200 ppb was detected. The peak intensity of the TMA characteristic ions was linearly related to the “e” exponent of the concentration with a curve fit of 0.996. A standard deviation of less than 0.306% was obtained with 10 replicate analyses of 10 ppb TMA. The signal intensity difference between dry and wet (relative humidity > 93%) TMA samples is only 2.7%, and the recovery rate of the sample was 106.819%.ConclusionsSI‐IMS based on the stepwise SI method has the advantages of low ionization temperature, high detection sensitivity, strong resistance to humidity interference, and good repeatability. It is a promising method for detecting organic nitrogen compounds in exhaled breath.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3