The PES1/FOXM1 heterodimer suppresses TCF21 and ERβ expression in ovarian endometriosis

Author:

Zhu Jingwen1,Wu Peili1,Lu Ruihui1,Zeng Cheng1,Peng Chao1,Zhou Yingfang1,Xue Qing1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology Peking University First Hospital Beijing China

Abstract

AbstractTranscription factor 21 (TCF21) and estrogen receptor beta (ERβ, encoded by ESR2) are highly expressed in endometriotic stromal cells (ESCs) and contribute to the pathogenesis of endometriosis. However, the exploration of TCF21 and ERβ expression regulation at the molecular level remains limited. Here, by using bioinformatics analysis and experimental verification, we identified PES1, also known as Pescadillo, as a negative regulator in the development of endometriosis that downregulates TCF21 and ERβ expression in ESCs. PES1 overexpression regulated critical biological processes involved in endometriosis development, such as invasion and apoptosis. A coimmunoprecipitation assay showed that PES1 could form a complex with Forkhead box M1 (FOXM1). Further analyses elucidated that siPES1 in ectopic lesions decreased the stability of FOXM1 protein and reduced the binding activities of FOXM1 to TCF21 and ESR2 promoters, thus weakening the transcriptional inhibition of TCF21 and ERβ by FOXM1. Moreover, in an endometriosis mouse model, overexpressing PES1 effectively reduced the growth of ectopic lesions and suppressed TCF21 and ERβ expression, which suggests a promising therapeutic strategy for endometriosis. Collectively, our results indicate that the loss of PES1 in ectopic lesions contributes to endometriosis progression by upregulating ERβ and TCF21 expression through heterodimer formation with FOXM1. Moreover, targeting PES1 could serve as a treatment method for endometriosis.

Publisher

Wiley

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3