Friction welding joint analysis of dissimilar nanocomposites: PEEK/aluminum to PEEK/titanium

Author:

Senkathir S.1,Pramanik Sumit1ORCID,Mukherjee Manidipto2

Affiliation:

1. Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, College of Engineering and Technology SRM Institute of Science and Technology, Kattankulathur Chennai Tamil Nadu India

2. WAAM3DP, CAMM CSIR‐Central Mechanical Engineering Research Institute Durgapur West Bengal India

Abstract

AbstractWelding of dissimilar materials is extremely challenging to the researchers. In present work, for the first time, poly(ether ether ketone) (PEEK) based aluminum (Al), titanium (Ti) reinforced nanocomposites with varying reinforcements of 10, 20, 30, and 40 vol% were developed using powder metallurgy technology. Additionally, for the first time, the two dissimilar nanocomposites of PEEK/Al and PEEK/Ti were successfully welded by friction welding (FW) process to produce FW PEEK/Al‐PEEK/Ti nanocomposites with equal metallic reinforcements (viz., 10–40 vol% Ti or Al). The nanocomposites were characterized precisely and correlated by physical, microstructural, structural, thermal, and micromechanical tests. Crystallinity being a factor of melting temperature affects significantly the micromechanical characteristics influenced by reinforced particle‐concentrations. The FW PEEK/30Al‐PEEK/30Ti was found as best material since it showed highest nanohardness (0.652 GPa) and elastic modulus (15.902 GPa) in FW Joint at 40 mN compared to other FW nanocomposites. At the FW joint section, it was discovered that the reinforced particles were being transferred through an interdiffusion mechanism. Mobility of the nanoparticles was influenced by the concentration of the reinforced particles, which further modified the matrix's crystallization behavior and consequently influenced the FW nanocomposites' micromechanical properties. Therefore, the present work has suggested a feasible route for applying thermoplastic nanocomposites in the biomedical and aerospace industries.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3