Sound speed and attenuation of human pancreas and pancreatic tumors and their influence on focused ultrasound thermal and mechanical therapies

Author:

Gray Michael D.1,Spiers Laura1,Coussios Constantin C.1

Affiliation:

1. Institute of Biomedical Engineering University of Oxford Oxford UK

Abstract

AbstractBackgroundThere is increasing interest in using ultrasound for thermal ablation, histotripsy, and thermal or cavitational enhancement of drug delivery for the treatment of pancreatic cancer. Ultrasonic and thermal modelling conducted as part of the treatment planning process requires acoustic property values for all constituent tissues, but the literature contains no data for the human pancreas.PurposeThis study presents the first acoustic property measurements of human pancreatic samples and provides examples of how these properties impact a broad range of ultrasound therapies.MethodsData were collected on human pancreatic tissue samples at physiological temperature from 23 consented patients in cooperation with a hospital pathology laboratory. Propagation of ultrasound over the 2.1–4.5 MHz frequency range through samples of various thicknesses and pathologies was measured using a set of custom‐built ultrasonic calipers, with the data processed to estimate sound speed and attenuation. The results were used in acoustic and thermal simulations to illustrate the impacts on extracorporeal ultrasound therapies for mild hyperthermia, thermal ablation, and histotripsy implemented with a CE‐marked clinical system operating at 0.96 MHz.ResultsThe mean sound speed and attenuation coefficient values for human samples were well below the range of values in the literature for non‐human pancreata, while the human attenuation power law exponents were substantially higher. The simulated impacts on ultrasound mediated therapies for the pancreas indicated that when using the human data instead of the literature average, there was a 30% reduction in median temperature elevation in the treatment volume for mild hyperthermia and 43% smaller volume within a 60°C contour for thermal ablation, all driven by attenuation. By comparison, impacts on boiling and intrinsic threshold histotripsy were minor, with peak pressures changing by less than 15% (positive) and 1% (negative) as a consequence of the counteracting effects of attenuation and sound speed.ConclusionThis study provides the most complete set of speed of sound and attenuation data available for the human pancreas, and it reiterates the importance of acoustic material properties in the planning and conduct of ultrasound‐mediated procedures, particularly thermal therapies.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3