Nanocellulose water treatment membranes and filters: a review

Author:

Mautner Andreas1ORCID

Affiliation:

1. Polymer and Composite Engineering (PaCE) Group Institute of Materials Chemistry and Research, University of Vienna Vienna Austria

Abstract

AbstractThis review covers the use of nanocelluloses in water treatment applications with particular focus on membranes and filters made either entirely from (nano)cellulose or in composite approaches. Nanocelluloses are among the emerging materials of this century, having found an abundance of potential applications in the fields of composites, medicine, functional additives or water treatment. Water treatment applications in particular have received significant academic and commercial attention, with a large variety of approaches developed in order to address arguably one of the largest problems that humanity is confronted with in the 21st century: clean water. In this regard, treatment of both potable water and wastewater is of high importance. The reason for the viability of nanocelluloses as base material relies upon their high specific surface area and abundance of OH groups that already exhibit certain attraction toward pollutants carrying ionic structures or dyes and also can be easily modified to significantly increase the affinity of nanocelluloses toward these pollutants. Nanocelluloses in their various forms (cellulose nanocrystals, cellulose nanofibrils, bacterial cellulose) have been applied in water treatment, with membranes and filters (size exclusion, e.g. for nanoparticle filtration, or affinity membranes) as well as adsorbents (e.g. heavy metal ions, dyes, nitrates) being the most studied. © 2020 The Author. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Publisher

Wiley

Reference172 articles.

1. UN General Assembly Resolution adopted by the General Assembly on 28 July 2010: 64/292. The human right to water and sanitation. Available:https://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/64/292[25 November 2019].

2. United Nations World Water Assessment Programme The United Nations World Water Development Report 2017: Wastewater: the untapped resource.http://unesdoc.unesco.org/images/0024/002471/247153e.pdf[25 November 2019].

3. World Health Organization.Fact Sheet Drinking‐water. Available:https://www.who.int/news-room/fact-sheets/detail/drinking-water[25 November 2019].

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3