Conductive hydrogel as stress‐strain sensor for human motion monitoring

Author:

Mondal Md. Ibrahim H.1,Sofiuzzaman Md.1,Ahmed Firoz12,Hessel Volker34,Ahmed Mohammad Boshir34ORCID,Zargar Masoumeh5

Affiliation:

1. Polymer and Textile Research Lab., Department of Applied Chemistry and Chemical Engineering University of Rajshahi Rajshahi Bangladesh

2. Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories BCSIR Rajshahi Bangladesh

3. School of Chemical Engineering The University of Adelaide, North Terrace Adelaide Australia

4. Institute for Sustainability Energy and Resources The University of Adelaide, North Terrace Adelaide Australia

5. School of Engineering Edith Cowan University Joondalup Australia

Abstract

AbstractHydrogel‐based stress‐strain sensors have attracted immense attention recently for developing wearable electronic devices and health‐monitoring systems owing to their intrinsic soft characteristics and flexible nature. Developing hydrogel that has high conductivity, better mechanical performance, and elasticity is necessary for better analysis or getting accurate measurement data. Hence, this study focuses on the development of novel conductive hydrogels with enhanced mechanical, swelling, and sensing properties targeting the advancement of stress‐strain sensitive hydrogel sensors. Polyvinyl alcohol (PVA) and citric acid (CA) have been used to prepare esterified PVA/CA hydrogels while using a simple one‐pot method followed by doping with a conductive polymer (polyaniline, PANI). The resultant PVA/CA/PANI hydrogel displayed a high water uptake capacity of ∼4200%, a high mechanical strain of 700%, high puncture resistance, large durability, and a fast response time when applied as soft human‐motion sensors in real‐time measurement of large‐scale and subtle human physiological stress activities (i.e., joint motions in the forefinger, elbow, wrist, and neck). The high strain sensitivity and ultrahigh stretchability of hydrogel sensors allow them to detect small mechanical changes caused by human movement showing their great potential for hydrogel‐based sensor device fabrication.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3