The role of DYNLT3 in breast cancer proliferation, migration, and invasion via epithelial‐to‐mesenchymal transition

Author:

Wang Han1,Chen Xin1,Jin Yanshan1,Liu Tingxian1,Song Yizuo1,Zhu Xuejie2,Zhu Xueqiong1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology The Second Affiliated Hospital of Wenzhou Medical University Wenzhou China

2. Department of Obstetrics and Gynecology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China

Abstract

AbstractPurposeDYNLT3 is identified as an age‐related gene. Nevertheless, the specific mechanism of its carcinogenesis in breast tumor has not been clarified. This research aims to elucidate the role and the underlying molecular pathways of DYNLT3 on breast cancer tumorigenesis.MethodsThe differential expression of DYNLT3 among breast cancer, breast fibroids, and normal tissues, as well as in various breast cancer cell lines were detected by immunohistochemical staining, real‐time quantitative reverse transcription‐PCR and Western blotting, respectively. Additionally, the role of DYNLT3 on cell viability and proliferation were observed through cell counting kit‐8, bromodeoxyuridine, and colony formation experiments. Migratory and invasive abilities was envaulted by wound healing and Transwell methods. Apoptotic cells rate was examined by flow cytometry. Furthermore, nude mice xenograft models were established to confirm the role of DYNLT3 in tumor formation in vivo.ResultsDYNLT3 expression was highly rising in both breast cancer tissues and cells. DYNLT3 knockdown obviously suppressed cell growth, migration and invasion, and induced cell apoptosis in MDA‐MB‐231 and MCF‐7 breast cancer cells. The overexpression of DYNLT3 exerted the opposite effect in MDA‐MB‐231 cells. Moreover, DYNLT3 knockdown inhibited tumor formation in vivo. Mechanistically, an elevation of N‐cadherin and vimentin levels and a decline of E‐cadherin were observed when DYNLT3 was upregulated, which was reversed when DYNLT3 knockdown was performed.ConclusionDYNLT3 may function as a tumor‐promotor of age‐associated breast cancer, which is expected to provide experimental basis for new treatment options.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3