Perturbed spiral real‐time phase‐contrast MR with compressive sensing reconstruction for assessment of flow in children

Author:

Kowalik Grzegorz Tomasz1ORCID,Knight Daniel12,Steeden Jennifer Anne1ORCID,Muthurangu Vivek13

Affiliation:

1. Centre for Cardiovascular Imaging University College London Institute of Cardiovascular Science London United Kingdom

2. Department of Cardiology Royal Free London NHS Foundation Trust London United Kingdom

3. Great Ormond Street Hospital for Children London United Kingdom

Abstract

Purposewe implemented a golden‐angle spiral phase contrast sequence. A commonly used uniform density spiral and a new ‘perturbed’ spiral that produces more incoherent aliases were assessed. The aim was to ascertain whether greater incoherence enabled more accurate Compressive Sensing reconstruction and superior measurement of flow and velocity.MethodsA range of ‘perturbed’ spiral trajectories based on a uniform spiral trajectory were formulated. The trajectory that produced the most noise‐like aliases was selected for further testing. For in‐silico and in‐vivo experiments, data was reconstructed using total Variation L1 regularisation in the spatial and temporal domains. In‐silico, the reconstruction accuracy of the ‘perturbed’ golden spiral was compared to uniform density golden‐angle spiral. For the in‐vivo experiment, stroke volume and peak mean velocity were measured in 20 children using ‘perturbed’ and uniform density golden‐angle spiral sequences. These were compared to a reference standard gated Cartesian sequence.ResultsIn‐silico, the perturbed spiral acquisition produced more accurate reconstructions with less temporal blurring (NRMSE ranging from 0.03 to 0.05) than the uniform density acquisition (NRMSE ranging from 0.06 to 0.12). This translated in more accurate results in‐vivo with no significant bias in the peak mean velocity (bias: −0.1, limits: −4.4 to 4.1 cm/s;P= 0.98) or stroke volume (bias: −1.8, limits: −9.4 to 5.8 ml,P= 0.19).ConclusionWe showed that a ‘perturbed’ golden‐angle spiral approach is better suited to Compressive Sensing reconstruction due to more incoherent aliases. This enabled accurate real‐time measurement of flow and peak velocity in children.

Funder

Royal Society

Heart Research UK

Publisher

Wiley

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3