Catalysts for Direct Seawater Electrolysis: Current Status and Future Prospectives

Author:

Kasani Alei123,Maric Radenka123,Bonville Leonard1,Bliznakov Stoyan12

Affiliation:

1. Center for Clean Energy Engineering University of Connecticut Storrs CT USA 06268

2. Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT USA 06269

3. Institute of Materials Science University of Connecticut Storrs CT USA 06269

Abstract

AbstractGlobal freshwater shortage is forcing researchers to focus on seawater electrolysis for large‐scale green hydrogen production. Seawater purification by reverse osmosis (RO) for use in conventional water electrolyzers (WEs) is another approach, however, that requires large capital investments. Alternatively, seawater can be used directly in a novel type of anion exchange membrane WE (AEMWE) which is currently under development. The AEMWEs have the advantage of using non‐precious catalysts and are less sensitive to the presence of impurities. Success in this early‐stage technology relies on the development of efficient and durable electrocatalysts. This paper provides a comprehensive review of the status and future trends for developing catalysts operating directly with seawater. Catalysts are ranked based on their activity and durability at high current densities of 500 mAcm−2 and 1000 mAcm−2. Notable anode catalysts, S−NiFe2O4, and NiFe LDH, exhibit reduced OER overpotentials of 287 mV and 296 mV at 1000 mAcm−2. Top‐performing cathode HER catalysts include HW−NiMoN‐2 h (132 mV) and Pt−Co−Mo (117 mV) at 1000 mAcm−2. Bifunctional catalysts, such as CoxPv@NC can operate below an overall voltage of 2 V at 1000 mAcm−2. This comparative analysis provides researchers and professionals with critical insights for advancing direct seawater electrolysis.

Publisher

Wiley

Reference187 articles.

1. National Hydrogen Association New York State Energy Research and Development Authority2010.

2. NASA technical report Nasa2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3