Modification of Conductive Carbon with N‐Coordinated Fe−Co Dual‐Metal Sites for Oxygen Reduction Reaction

Author:

Muthusamy Saravanakumar12345ORCID,Sabbah Amr16,Sabhapathy Palani57ORCID,Chang Yu‐Chung8,Billo Tadesse1,Syum Zeru1,Chen Li‐Chyong5910ORCID,Chen Kuei‐Hsien15ORCID

Affiliation:

1. Institute of Atomic and Molecular Sciences Academia Sinica Taipei 10617 Taiwan

2. Sustainable Chemical Science and Technology Taiwan International Graduate Program Academia Sinica, Nangang Taipei 11529 Taiwan

3. Institute of Chemistry Academia Sinica, Nangang Taipei 11529 Taiwan

4. Department of Applied Chemistry National Yang-Ming Chiao Tung University Hsinchu 30010 Taiwan

5. Center for Condensed Matter Sciences National Taiwan University Taipei 10617 Taiwan

6. Tabbin Institute for Metallurgical Studies, Tabbin Helwan 109 Cairo 11421 Egypt

7. Department of Chemical and Biomolecular Engineering Case Western Reserve University Cleveland Ohio 44106 USA

8. X-ray Absorption Group National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

9. Department of Physics National Taiwan University Taipei 10617 Taiwan

10. Center of Atomic Initiative for New Materials National Taiwan University Taipei 10617 Taiwan

Abstract

AbstractEarth‐abundant commercial conductive carbon materials are ideal electrocatalyst supports but cannot be directly utilized for single‐atom catalysts owing to the lack of anchoring sites. Therefore, we employed crosslink polymerization to modify the conductive carbon surface with Fe−Co dual‐site electrocatalysts for oxygen reduction reaction (ORR). First, metal‐coordinated polyurea (PU) aerogels were prepared using via crosslinked polymerization at ambient temperature. Then, carbon‐supported, atomically dispersed Fe−Co dual‐atom sites (FeCoNC/BP) were formed by high‐temperatures pyrolysis with a nitrogen source. FTIR and 13C NMR measurements showed PU linkages, while 15N NMR revealed metal–nitrogen coordination in the PU gels. Asymmetric, N‐coordinated, and isolated Fe−Co active structures were found after pyrolysis using XAS and STEM. In alkaline media, FeCoNC/BP exhibited excellent ORR activity, with a E1/2 of 0.93 V vs. RHE, higher than that of Pt/C (20 %) (0.90 V), FeNC/BP (0.88 V), and CoNC/BP (0.85 V). An accelerated durability test (ADT) on FeCoNC/BP indicated good durability over 35000 cycles. FeCoNC/BP also showed moderate ORR and ADT performance in acidic media. The macro/mesoporous N‐doped carbon structures enhanced the mass transport properties of the dual Fe−Co active‐sites. Therefore, modifying carbon supports with nonprecious metal catalysts may be a cost‐effective‐strategy for sustained electrochemical energy conversion.

Publisher

Wiley

Subject

Electrochemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3