A Review of the Recent Advances in Development of Noble Metal‐Free Materials as Electrocatalysts for Hydrogen and Oxygen Evolution Reactions

Author:

Farajzadeh Mustafa1,Rahsepar Fatemeh Rahnemaye1ORCID

Affiliation:

1. School of Chemistry College of Science University of Tehran Tehran 1417614411 Iran

Abstract

AbstractSustainable energy development can no longer be met by fossil fuels alone. Hence, electrochemical water splitting containing oxygen and hydrogen evolution reactions is appealing as a clean energy pathway. As respects the water splitting efficiency which is largely determined by the selectivity, durability, and intrinsic activity of the electrocatalysts, one of the most challenging questions when studying these materials is “which category of electrocatalysts will show the best performance in this issue?” The best electrocatalysts for water splitting still come from noble metals. Although these materials show particularly good efficiency, but due to the scarce resources their massive use is limited. Therefore, the noble metal‐free materials due to their stability, efficiency, abundance and variety of reaction sites were introduced as an interesting candidate for electrochemical water splitting reactions. In this review, based on the important above‐mentioned points, our attention was focused on key categories based on transition metals (TMs), metal organic framework derived (MOF‐derived), carbon‐based hybrids, graphitic carbon nitride (g‐C3N4) hybrids, and bio‐assisted electrocatalysts. These compounds have shown significant activity and stability for broad electrocatalysis applications in water splitting reactions and displaying remarkable potential to replace with noble metal‐based catalysts. This comprehensive review identifies rational strategies for designing and synthesizing high‐performance novel noble metal‐free electrocatalysts for water splitting.

Publisher

Wiley

Subject

Electrochemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3