Functionally Convergent White Adipogenic Progenitors of Different Lineages Participate in a Diffused System Supporting Tissue Regeneration

Author:

Lemos Dario R.12,Paylor Benjamin12,Chang Chihkai12,Sampaio Arthur12,Underhill T. Michael12,Rossi Fabio M. V.12

Affiliation:

1. The Biomedical Research Centre, 2222 Health Sciences MallThe University of British Columbia, Vancouver, British Columbia, Canada

2. Faculty of Medicine, 317-2194 Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada

Abstract

Abstract Pathologies characterized by lipomatous infiltration of craniofacial structures as well as certain forms of lipodystrophies suggest the existence of a distinct adipogenic program in the cephalic region of mammals. Using lineage tracing, we studied the origin of craniofacial adipocytes that accumulate both in cranial fat depots and during ectopic lipomatous infiltration of craniofacial muscles. We found that unlike their counterparts in limb muscle, a significant percentage of cranial adipocytes is derived from the neural crest (NC). In addition, we identified a population of NC-derived Lin−/α7−/CD34+/Sca-1+ fibro/adipogenic progenitors (NC-FAPs) that resides exclusively in the mesenchyme of cephalic fat and muscle. Comparative analysis of the adipogenic potential, impact on metabolism, and contribution to the regenerative response of NC-FAPs and mesoderm-derived FAPs (M-FAPs) suggests that these cells are functionally indistinguishable. While both NC- and M-FAPs express mesenchymal markers and promyogenic cytokines upon damage-induced activation, NC-FAPs additionally express components of the NC developmental program. Furthermore, we show that craniofacial FAP composition changes with age, with young mice containing FAPs that are almost exclusively of NC origin, while NC-FAPs are progressively replaced by M-FAPs as mice age. Based on these results, we propose that in the adult, ontogenetically distinct FAPs form a diffused system reminiscent of the endothelium, which can originate from multiple developmental intermediates to seed all anatomical locations. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

CIHR

Heart and Stroke Foundation of Canada

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3