Trehalases from spores and vegetative cells of yeast Saccharomyces cerevisiae

Author:

Wolska‐Mitaszko Barbara

Abstract

AbstractTrehalase (THA) activity from S. cerevisiae spores and vegetative cells could be differentiated in cell‐free extracts. THA from the vegetative cells has an optimal activity at neutral pH whereas biphase pH optimum in the spores was observed. The enzyme from the spores exhibited higher thermostability than that from the vegetative cells. The presence of magnesium ions was necessary mainly for THA activity from the vegetative cells. The effect of the other metal ions studied: Hg2+, Ag2+, Cu2+, Fe3+, Ni2+, Cd2+ etc. (Table II), on THA from both sources was almost the same, however, the spores THA was resistant to Pb2+ and especially to Zn2+. Moreover, the influence of inorganic polyphosphates and polyamines was also quite dissimilar. Polyphosphates inhibited THA from the vegetative cells and to a smaller extent from the spores. On the other hand, polyamines stimulated highly THA activity from vegetative yeast cells in contrast to spores one. The effect of these ions modulators would facilitate differentiating of THA activity in the cell‐free extracts from both sources. These data could be interpreted as phenotypic reflections of trehalase genes expression in the S. cerevisiae cells.

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Production and applications of polyphosphate;Biomass, Biofuels, Biochemicals;2021

2. The Role of Inorganic Polyphosphates in Stress Response and Regulation of Enzyme Activities in Yeast;Inorganic Polyphosphates in Eukaryotic Cells;2016

3. Isoforms of trehalase and invertase of Fusarium oxysporum;Mycological Research;2007-04

4. Polyphosphate and Phosphate Pump;Annual Review of Microbiology;2000-10

5. New aspects of inorganic polyphosphate metabolism and function;Journal of Bioscience and Bioengineering;1999-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3