Affiliation:
1. Intitute of Ground Water Studies, Faculty of Natural and Agricultural Sciences University of the Free State Bloemfontein South Africa
2. Department of Basic Sciences and Related Studies Mehran University of Engineering and Technology Jamshoro Pakistan
3. Department of Medical Research, China Medical University Hospital China Medical University Taichung Taiwan
Abstract
The newly generalized energy storage component, namely, memristor, which is a fundamental circuit element so called universal charge‐controlled mem‐element, is proposed for controlling the analysis and coexisting attractors. The governing differential equations of memristor are highly nonlinear for mathematical relationships. The mathematical model of memristor is established in terms of newly defined fractal‐fractional differential operators so called Atangana‐Baleanu, Caputo‐Fabrizio, and Caputo fractal‐fractional differential operator. A novel numerical approach is developed for the governing differential equations of memristor on the basis of Atangana‐Baleanu, Caputo‐Fabrizio, and Caputo fractal‐fractional differential operator. We discussed chaotic behavior of memristor under three criteria such as (i) varying fractal order, we fixed fractional order; (ii) varying fractional order, we fixed fractal order; and (ii) varying fractal and fractional orders simultaneously. Our investigated graphical illustrations and simulated results via MATLAB for the chaotic behaviors of memristor suggest that newly presented Atangana‐Baleanu, Caputo‐Fabrizio, and Caputo fractal‐fractional differential operators generate significant results as compared with classical approach.
Funder
Mehran University of Engineering and Technology
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献