Process synthesis for addressing the sustainable energy systems and environmental issues

Author:

Yuan Zhihong,Chen Bingzhen

Abstract

AbstractDiminishing petroleum reserves and oscillations of the global petroleum market, together with the influence on the environment in terms of greenhouse gas emissions have accelerated the needs to explore renewable feedstocks and to seek novel sustainable production systems. Process synthesis, the core of process systems engineering, can be predicted to be the powerful tool to construct an environmental‐friendly, cost‐effective sustainable energy system. Following the brief descriptions of the main methodologies for process synthesis, the present article reviews current activities on the optimal synthesis of biorenewables conversion processes, polygeneration processes, as well as carbon capture processes. Set in the context of exist achievements and future energy and environment requirements, we further elucidate the potential research vistas on optimal synthesis of novel energy systems, specifically, (a) novel biorenewable conversion process; (b) innovative materials‐based carbon capture process; (c) solar/wind driven energy conversion system; (d) integrated biorenewable conversion process for the production of chemicals. Finally, challenges about the above aspects are concisely discussed. © 2012 American Institute of Chemical Engineers AIChE J, 2012

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3