Recent Advances in Polyoxometalate Based Nanoplatforms Mediated Reactive Oxygen Species Cancer Therapy

Author:

Yue Zhengya1,Wang Runjie1,Li Jialun1,Tang Minglu1,Yang Li1,Gu Hao1,Wang Xijin2,Sun Tiedong1ORCID

Affiliation:

1. College of Chemistry, Chemical Engineering, and Resource Utilization Northeast Forestry University Harbin 150040 PR China

2. The First Psychiatric Hospital of Harbin Hongwei Road Harbin 150040 PR China

Abstract

AbstractThe potential of reactive oxygen species (ROS) cancer therapy in tumor treatment has been greatly enhanced by the introduction of catalytically superior polyoxometalate (POM)‐based nanoplatforms, mainly composed of atomic clusters consisting of pre‐transition metals and oxygen. These nanoplatforms have unique advantages, such as Fenton activity at neutral pH, induction of cellular ferroptosis instead of just apoptosis, and sensitivity to external field stimulation. However, there are also inevitable challenges such as neutralization of ROS by the antioxidant system of the tumor microenvironment (TME), hypoxia, and limited hydrogen peroxide concentrations. This review article aims to provide an overview of recent research advancements in POM‐based nanoplatforms for ROS therapy from the perspective of chemical reactions and biological processes, addressing endogenous and exogenous factors that affect the antitumor efficacy. Endogenous factors include the mechanism of ROS generation by POM, the impact of pH and antioxidant systems on POM, and the various manners of tumor cell death. Exogenous stimuli mainly include light, heat, X‐rays, and electricity. The article analyzes the specific mechanisms of action of each influencing factor in the first two sections, concluding with the limitations of the present study and some possible directions for future research.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3