Advanced glycation end products induce nucleus pulposus cell apoptosis by upregulating TXNIP via inhibiting glycolysis pathway in intervertebral disc degeneration

Author:

Chen Fei1,Sheng Xiaoping2,Sun Haobo1,Guo Qunfeng1,Wang Haibin1,Wu Lecheng1,Ni Bin1,Yang Jun1ORCID

Affiliation:

1. Department of Orthopaedics Second Affiliated Hospital of Naval Medical University Shanghai China

2. Shanghai Municipal Hospital of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai China

Abstract

AbstractAccumulation of advanced glycation end products (AGEs) causes apoptosis in human nucleus pulposus cells (NPCs), contributing to intervertebral disc degeneration (IVDD). The purpose of this study was to determine the roles of thioredoxin‐interacting protein (TXNIP) in the mechanisms underlying AGE‐induced apoptosis of NPCs. TXNIP was silenced or overexpressed in HNPCs exposed to AGEs. Glycolysis was assessed using extracellular acidification rate (ECAR), ATP level, GLUT1, and GLUT4 measurements. AGEs, TXNIP, GLUT1, and GLUT4 levels in IVDD patients were measured as well. In NPCs, AGEs reduced cell viability, induced apoptosis, inhibited glycolysis, and increased TXNIP expression. Silencing TXNIP compromised the effects of AGEs on cell viability, apoptosis, and glycolysis in NPCs. Furthermore, TXNIP overexpression resulted in decreased cell viability, increased apoptotic cells, and glycolysis suppression. Furthermore, co‐treatment with a glycolysis inhibitor improved TXNIP silencing's suppressive effects on AGE‐induced cell injury in NPCs. In IVDD patients with Pfirrmann Grades II–V, increasing trends in AGEs and TXNIP were observed, while decreasing trends in GLUT1 and GLUT4. AGE levels had positive correlations with TXNIP levels. Both AGE and TXNIP levels correlated negatively with GLUT1 and GLUT4. Our study indicates that TXNIP plays a role in mediating AGE‐induced cell injury through suppressing glycolysis. The accumulation of AGEs, the upregulation of TXNIP, and the downregulation of GLUT1 and GLUT4 are all linked to the progression of IVDD.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3