Na2S in‐situ infiltrated in actived carbon as high‐efficiency presodiation additives for sodium ion hybrid capacitors

Author:

Pei Mengfan1,Liu Dongming1,Jin Xin1,Li Borui1,Jiang Wanyuan2,Song Zihui1,Jian Xigao12,Hu Fangyuan1

Affiliation:

1. State Key Laboratory of Fine Chemicals, School of Materials Science and Engineering, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province) Dalian University of Technology Dalian China

2. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province) Dalian University of Technology Dalian China

Abstract

AbstractSodium ion hybrid capacitors (SIHC) are emerging as promising next‐generation energy storage devices with high energy/power density. Presodiation is an essential part of SIHC production due to the lack of sodium sources in the cathode and anode. However, in the current presodiation methods, electrochemical presodiation by galvanostatic current charging and discharging requires a temporary half‐cell or a complex reassembling process, which severely hinders the commercialization of SIHC. Herein, in situ synthesized Na2S infiltrated in activated carbon was used as a sodium salt additive for supplying Na+ in SIHC. Due to a low ratio of Na2S additive attributed to high theoretical specific capacity, the fabricated Na2S/activated carbon composite//HC SIHC can show a higher energy density of 129.71 Wh kg−1 than previously reported SIHC on presodiation of cathode additives. Moreover, the designed SIHC shows an excellent cycling performance of 10,000 cycles, which is attributed to the Na2S additive with the advantages of low decomposition potential and no gas generation. This work provides a novel approach for the fabrication of highly efficient Na2S additive composite cathodes for SIHC.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3