Rational Design of a Self‐Assembling High Performance Organic Nanofluorophore for Intraoperative NIR‐II Image‐Guided Tumor Resection of Oral Cancer

Author:

Sun Xianwei1,Chintakunta Praveen Kumar1,Badachhape Andrew A.1,Bhavane Rohan12,Lee Huan‐Jui3,Yang David S.3,Starosolski Zbigniew12,Ghaghada Ketan B.12,Vekilov Peter G.34,Annapragada Ananth V.12,Tanifum Eric A.12ORCID

Affiliation:

1. Department of Radiology Baylor College of Medicine Houston TX 77030 USA

2. Department of Radiology Texas Children's Hospital Houston TX 77030 USA

3. Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204 USA

4. Department of Chemistry University of Houston Houston TX 77204 USA

Abstract

AbstractThe first line of treatment for most solid tumors is surgical resection of the primary tumor with adequate negative margins. Incomplete tumor resections with positive margins account for over 75% of local recurrences and the development of distant metastases. In cases of oral cavity squamous cell carcinoma (OSCC), the rate of successful tumor removal with adequate margins is just 50–75%. Advanced real‐time imaging methods that improve the detection of tumor margins can help improve success rates,overall safety, and reduce the cost. Fluorescence imaging in the second near‐infrared (NIR‐II) window has the potential to revolutionize the field due to its high spatial resolution, low background signal, and deep tissue penetration properties, but NIR‐II dyes with adequate in vivo performance and safety profiles are scarce. A novel NIR‐II fluorophore, XW‐03‐66, with a fluorescence quantum yield (QY) of 6.0% in aqueous media is reported. XW‐03‐66 self‐assembles into nanoparticles (≈80 nm) and has a systemic circulation half‐life (t1/2) of 11.3 h. In mouse models of human papillomavirus (HPV)+ and HPV‐ OSCC, XW‐03‐66 outperformed indocyanine green (ICG), a clinically available NIR dye, and enabled intraoperative NIR‐II image‐guided resection of the tumor and adjacent draining lymph node with negative margins. In vitro and in vivo toxicity assessments revealed minimal safety concerns for in vivo applications.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3