Bamboo‐Inspired Crack‐Face Bridging Fiber Reinforced Composites Simultaneously Attain High Strength and Toughness

Author:

Wang Hao12,Wu Zhangyu3,Tao Jie4,Wang Bin2,He Chaobin15ORCID

Affiliation:

1. Department of Materials Science and Engineering National University of Singapore Queenstone 117575 Singapore

2. Department of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China

3. School of Materials Science and Engineering Southeast University Nanjing 210096 China

4. School of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210096 China

5. Institute of Materials Research and Engineering Agency for Science Technology and Research (A*STAR) Fusionopolis Way Innovis 138634 Singapore

Abstract

AbstractBiological strong and tough materials have been providing original structural designs for developing bioinspired high‐performance composites. However, new synergistic strengthening and toughening mechanisms from bioinspired structures remain yet to be explored and employed to upgrade current carbon material reinforced polymer composites, which are keystone to various modern industries. In this work, from bamboo, the featured cell face‐bridging fibers, are abstracted and embedded in a cellular network structure, and develop an epoxy resin/carbon composite featuring biomimetic architecture through a fabrication approach integrating freeze casting, carbonization, and resin infusion with carbon fibers (CFs) and carbon nanotubes (CNTs). Results show that this bamboo‐inspired crack‐face bridging fiber reinforced composite simultaneously possesses a high strength (430.8 MPa) and an impressive toughness (8.3 MPa m1/2), which surpass those of most resin‐based nanocomposites reported in the literature. Experiments and multiscale simulation models reveal novel synergistic strengthening and toughening mechanisms arising from the 2D faces that bridge the CFs: sustaining and transferring loads to enhance the overall load‐bearing ability and furthermore, incorporating CNTs pullout that resembles the intrinsic toughening at the molecular to nanoscale and strain delocalization, crack branching, and crack deflection as the extrinsic toughening at the microscale. These constitute a new effective and efficient strategy to develop simultaneously strong and tough composites through abstracting and implenting novel bioinspired structures, which contributes to addressing the long‐standingly challenging attainment of both high strength and toughness for advanced structural materials.

Funder

National University of Singapore

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3