Electrodeposited Superhydrophilic‐Superhydrophobic Composites for Untethered Multi‐Stimuli‐Responsive Soft Millirobots

Author:

Zheng Zhiqiang1,Han Jie123,Demir Sinan Ozgun1,Wang Huaping45,Jiang Weitao23,Liu Hongzhong23,Sitti Metin167ORCID

Affiliation:

1. Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany

2. State Key Laboratory for Manufacturing Systems Engineering Xi'an Jiaotong University Xi'an 710054 China

3. School of Mechanical Engineering Xi'an Jiaotong University Xi'an 710054 China

4. Intelligent Robotics Institute School of Mechatronical Engineering Beijing Institute of Technology Beijing 100081 China

5. Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology) Ministry of Education Beijing 100081 China

6. Institute for Biomedical Engineering ETH Zurich Zurich 8092 Switzerland

7. School of Medicine and College of Engineering Koç University Istanbul 34450 Turkey

Abstract

AbstractTo navigate in complex and unstructured real‐world environments, soft miniature robots need to possess multiple functions, including autonomous environmental sensing, self‐adaptation, and multimodal locomotion. However, to achieve multifunctionality, artificial soft robots should respond to multiple stimuli, which can be achieved by multimaterial integration using facile and flexible fabrication methods. Here, a multimaterial integration strategy for fabricating soft millirobots that uses electrodeposition to integrate two inherently non‐adherable materials, superhydrophilic hydrogels and superhydrophobic elastomers, together via gel roots is proposed. This approach enables the authors to electrodeposit sodium alginate hydrogel onto a laser‐induced graphene‐coated elastomer, which can then be laser cut into various shapes to function as multi‐stimuli‐responsive soft robots (MSRs). Each MSR can respond to six different stimuli to autonomously transform their shapes, and mimic flowers, vines, mimosas, and flytraps. It is demonstrated that MSRs can climb slopes, switch locomotion modes, self‐adapt between air‐liquid environments, and transport cargo between different environments. This multimaterial integration strategy enables creating untethered soft millirobots that have multifunctionality, such as environmental sensing, self‐propulsion, and self‐adaptation, paving the way for their future operation in complex real‐world environments.

Funder

China Scholarship Council

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3