Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications

Author:

Li Zesheng1ORCID,Li Bolin1,Yu Changlin1,Wang Hongqiang2,Li Qingyu2

Affiliation:

1. College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 China

2. Guangxi Key Laboratory of Low Carbon Energy Materials Guangxi Normal University Guilin 541004 China

Abstract

AbstractHollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3