Engineering Multi‐Scale Organization for Biotic and Organic Abiotic Electroactive Systems

Author:

Yao Ze‐Fan12ORCID,Lundqvist Emil3,Kuang Yuyao1,Ardoña Herdeline Ann M.1234ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Samueli School of Engineering University of California Irvine CA 92697 USA

2. Department of Chemistry School of Physical Sciences University of California Irvine CA 92697 USA

3. Department of Biomedical Engineering Samueli School of Engineering University of California Irvine CA 92697 USA

4. Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA

Abstract

AbstractMulti‐scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems—whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state‐of‐the‐art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi‐scale organization of electroactive organic materials, including biomolecule‐based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic‐abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems.

Funder

National Institutes of Health

Division of Materials Research

NHLBI Division of Intramural Research

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3