Creation of Environmentally Friendly Super “Dinitrotoluene Scavenger” Plants

Author:

Gao Jian‐Jie123ORCID,Li Zhen‐Jun123,Zhu Bo4,Wang Li‐Juan123,Xu Jing123,Wang Bo123,Fu Xiao‐Yan123,Han Hong‐Juan123,Zhang Wen‐Hui123,Deng Yong‐Dong123,Wang Yu123,Zuo Zhi‐Hao123,Peng Ri‐He123,Tian Yong‐Sheng123,Yao Quan‐Hong123

Affiliation:

1. Biotechnology Research Institute Shanghai Academy of Agricultural Sciences Shanghai 201106 China

2. Shanghai Key Laboratory of Agricultural Genetics and Breeding Shanghai Academy of Agricultural Sciences Shanghai 201106 China

3. Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs Shanghai 201106 China

4. Anhui Province Key Laboratory for the Conservation of Biological Resources College of Life Sciences Anhui Normal University Wuhu 241000 China

Abstract

AbstractPervasive environmental contamination due to the uncontrolled dispersal of 2,4‐dinitrotoluene (2,4‐DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy‐intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4‐DNT degradation module is designed, assembled, and validated in rice plants. Consequently, the modified rice plants acquire the ability to counteract the phytotoxicity of 2,4‐DNT. The most significant finding of this study is that these modified rice plants can completely degrade 2,4‐DNT into innocuous substances and subsequently introduce them into the tricarboxylic acid cycle. Further, research reveals that the modified rice plants enable the rapid phytoremediation of 2,4‐DNT‐contaminated soil. This innovative, eco‐friendly phytoremediation approach for dinitrotoluene‐contaminated soil and water demonstrates significant potential across diverse regions, substantially contributing to carbon neutrality and sustainable development objectives by repurposing carbon and energy from organic contaminants.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3