Dual Polarization of Ni Sites at VOx−Ni3N Interface Boosts Ethanol Oxidation Reaction

Author:

Zhou Min12,Jin Binrong1,Kong Weijie1,Chen Anjie1,Chen Yuhe1,Zhang Xiuyun1,Lu Fei12ORCID,Wang Xi3,Zeng Xianghua1

Affiliation:

1. College of Physical Science and Technology Yangzhou University Yangzhou 225002 P. R. China

2. Microelectronics Industry Research Institute Yangzhou University Yangzhou 225002 P. R. China

3. Department of Physics, School of Physical Science and Engineering Beijing Jiaotong University Beijing 100044 P. R. China

Abstract

AbstractSubstituting thermodynamically favorable ethanol oxidation reaction (EOR) for oxygen evolution reaction (OER) engenders high‐efficiency hydrogen production and generates high value‐added products as well. However, the main obstacles have been the low activity and the absence of an explicit catalytic mechanism. Herein, a heterostructure composed of amorphous vanadium oxide and crystalline nickel nitride (VOx−Ni3N) is developed. The heterostructure immensely boosts the EOR process, achieving the current density of 50 mA cm−2 at the low potential of 1.38 V versus reversible hydrogen electrode (RHE), far surpassing the sluggish OER (1.65 V vs RHE). Electrochemical impedance spectroscopy indicates that the as‐fabricated heterostructure can promote the adsorption of OH and the generation of the reactive species (O*). Theoretical calculations further outline the dual polarization of the Ni site at the interface, specifically the asymmetric charge redistribution (interfacial polarization) and in‐plane polarization. Consequently, the dual polarization modulates the d‐band center, which in turn regulates the adsorption/desorption strength of key reaction intermediates, thereby facilitating the entire EOR process. Moreover, a VOx−Ni3N‐based electrolyzer, coupling hydrogen evolution reaction (HER) and EOR, attains 50 mA cm−2 at a low cell voltage of ≈1.5 V. This work thus paves the way for creating dual polarization through interface engineering toward broad catalysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3