High‐Temperature Excitonic Condensation in 2D Lattice

Author:

Xu Yushuo1ORCID,Wang Yuanyuan2ORCID,Yu Shiqiang1,Sun Dongyue1,Dai Ying1,Huang Baibiao1,Wei Wei1ORCID

Affiliation:

1. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

2. Science, Mathematics and Technology Cluster Singapore University of Technology and Design Singapore 487372 Singapore

Abstract

AbstractExploration of high‐temperature bosonic condensation is of significant importance for the fundamental many‐body physics and applications in nanodevices, which, however, remains a huge challenge. Here, in combination of many‐body perturbation theory and first‐principles calculations, a new‐type spatially indirect exciton can be optically generated in two‐dimensional (2D) Bi2S2Te because of its unique structure feature. In particular, the spin‐singlet spatially indirect excitons in Bi2S2Te monolayer are dipole/parity allowed and reveal befitting characteristics for excitonic condensation, such as small effective mass and satisfied dilute limitation. Based on the layered Bi2S2Te, the possibility of the high‐temperature excitonic Bose–Einstein condensation (BEC) and superfluid state in two dimensions, which goes beyond the current paradigms in both experiment and theory, are proved. It should be highlighted that record‐high phase transition temperatures of 289.7 and 72.4 K can be theoretically predicted for the excitonic BEC and superfluidity in the atomic thin Bi2S2Te, respectively. It therefore can be confirmed that Bi2S2Te featuring bound bosonic states is a fascinating 2D platform for exploring the high‐temperature excitonic condensation and applications in such as quantum computing and dissipationless nanodevices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3