Spatiotemporal Immunomodulation and Biphasic Osteo‐Vascular Aligned Electrospun Membrane for Diabetic Periosteum Regeneration

Author:

Qiao Yusen12,Yu Lei1,Yang Peng1,Chen Miao1,Sun Haifu1,Wang Lingjie1,Wu Bangzhao1,Oh Chun‐do2,Yang Huilin1,Bai Jiaxiang134ORCID,Geng Dechun1ORCID

Affiliation:

1. Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Road Suzhou Jiangsu 215006 China

2. Department of Orthopedic Surgery Rush University Medical Center Chicago IL 60612 USA

3. Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China Hefei 230022 China

4. National Center for Translational Medicine (Shanghai) SHU Branch Shanghai University Shanghai China

Abstract

AbstractUnder diabetic conditions, blood glucose fluctuations and exacerbated immunopathological inflammatory environments pose significant challenges to periosteal regenerative repair strategies. Responsive immune regulation in damaged tissues is critical for the immune microenvironment, osteogenesis, and angiogenesis stabilization. Considering the high‐glucose microenvironment of such acute injury sites, a functional glucose‐responsive immunomodulation‐assisted periosteal regeneration composite material—PLA(Polylactic Acid)/COLI(Collagen I)/Lipo(Liposome)‐APY29 (PCLA)—is constructed. Aside from stimulating osteogenic differentiation, owing to the presence of surface self‐assembled type I collagen in the scaffolds, PCLA can directly respond to focal area high‐glucose microenvironments. The PCLA scaffolds trigger the release of APY29‐loaded liposomes, shifting the macrophages toward the M2 phenotype, inhibiting the release of inflammatory cytokines, improving the bone immune microenvironment, and promoting osteogenic differentiation and angiogenesis. Bioinformatics analyses show that PCLA enhances bone repair by inhibiting the inflammatory signal pathway regulating the polarization direction and promoting osteogenic and angiogenic gene expression. In the calvarial periosteal defect model of diabetic rats, PCLA scaffolds induce M2 macrophage polarization and improve the inflammatory microenvironment, significantly accelerating periosteal repair. Overall, the PCLA scaffold material regulates immunity in fluctuating high‐glucose inflammatory microenvironments, achieves relatively stable and favorable osteogenic microenvironments, and facilitates the effective design of functionalized biomaterials for bone regeneration therapy in patients with diabetes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3