Micron‐resolution Imaging of Cortical Bone under 14 T Ultrahigh Magnetic Field

Author:

He Tian1ORCID,Pang Zhenfeng1,Yin Yu1,Xue Huadong12,Pang Yichuan3,Song Haixin2,Li Jianhua2,Bai Ruiliang45,Qin An3,Kong Xueqian126ORCID

Affiliation:

1. Department of Chemistry Zhejiang University Hangzhou 310027 China

2. Department of Rehabilitation Sir Run Run Shaw Hospital College of Medicine Zhejiang University Hangzhou 310016 China

3. Shanghai Key Laboratory of Orthopedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 China

4. Interdisciplinary Institute of Neuroscience and Technology (ZIINT) College of Biomedical Engineering and Instrument Science Zhejiang University Hangzhou 310027 China

5. School of Medicine Zhejiang University Hangzhou 310058 China

6. Institute of Translational Medicine Shanghai Jiaotong University Shanghai 200240 China

Abstract

AbstractCompact, mineralized cortical bone tissues are often concealed on magnetic resonance (MR) images. Recent development of MR instruments and pulse techniques has yielded significant advances in acquiring anatomical and physiological information from cortical bone despite its poor 1H signals. This work demonstrates the first MR research on cortical bones under an ultrahigh magnetic field of 14 T. The 1H signals of different mammalian species exhibit multi‐exponential decays of three characteristic T2 or T2* values: 0.1–0.5 ms, 1–4 ms, and 4–8 ms. Systematic sample comparisons attribute these T2/T2* value ranges to collagen‐bound water, pore water, and lipids, respectively. Ultrashort echo time (UTE) imaging under 14 T yielded spatial resolutions of 20–80 microns, which resolves the 3D anatomy of the Haversian canals. The T2* relaxation characteristics further allow spatial classifications of collagen, pore water and lipids in human specimens. The study achieves a record of the spatial resolution for MR imaging in bone and shows that ultrahigh‐field MR has the unique ability to differentiate the soft and organic compartments in bone tissues.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3