A General and Efficient Strategy for Gene Delivery Based on Tea Polyphenols Intercalation and Self‐Polymerization

Author:

Chen Hao12,Guo Lina3,Ding Jinsong3,Zhou Wenhu3ORCID,Qi Yan12

Affiliation:

1. Department of Pathology Zhanjiang Central Hospital Guangdong Medical University Zhanjiang Guangdong 524000 China

2. Department of Pathology Shihezi University School of Medicine Shihezi Xinjiang 832002 China

3. Department of Pharmaceutics Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410013 China

Abstract

AbstractGene therapy that employs therapeutic nucleic acids to modulate gene expression has shown great promise for diseases therapy, and its clinical application relies on the development of effective gene vector. Herein a novel gene delivery strategy by just using natural polyphenol (‐)‐epigallocatechin‐3‐O‐gallate (EGCG) as raw material is reported. EGCG first intercalates into nucleic acids to yield a complex, which then oxidizes and self‐polymerizes to form tea polyphenols nanoparticles (TPNs) for effective nucleic acids encapsulation. This is a general method to load any types of nucleic acids with single or double strands and short or long sequences. Such TPNs‐based vector achieves comparable gene loading capacity to commonly used cationic materials, but showing lower cytotoxicity. TPNs can effectively penetrate inside cells, escape from endo/lysosomes, and release nucleic acids in response to intracellular glutathione to exert biological functions. To demonstrate the in vivo application, an anti‐caspase‐3 small interfering ribonucleic acid is loaded into TPNs to treat concanavalin A‐induced acute hepatitis, and excellent therapeutic efficacy is obtained in combination with the intrinsic activities of TPNs vector. This work provides a simple, versatile, and cost‐effective gene delivery strategy. Given the biocompatibility and intrinsic biofunctions, this TPNs‐based gene vector holds great potential to treat various diseases.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3