Affiliation:
1. School of Polymer Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea
2. Department of Materials Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea
3. Korea Institute of Industrial Technology (KITECH) Gwangju 61012 Republic of Korea
4. Korea Institute of Industrial Technology (KITECH) Ansan‐si 15588 Republic of Korea
Abstract
AbstractCarbon nanotubes (CNTs), owing to their superior electrical and mechanical properties, are a promising alternative to nonmetallic electrically conducting materials. In practice, cellulose as a low‐cost sustainable matrix has been used to prepare the aqueous dispersion of cellulose‐CNT (C‐CNT) nanocomposites. However, the compatibility with conventional solution‐processing and structural rearrangement for improving conductivity has yet to be determined. Herein, a straightforward route to prepare a conductive composite material from single‐walled CNTs (SWCNTs) and natural pulp is reported. High‐power shaking realizes the self‐alignment of individual SWCNTs in a cellulose matrix, resulting from the structural change in molecular orientations owing to countless collisions of zirconia beads in the aqueous mixture. The structural analysis of the dried C‐CNT films confirms that the entanglement and dispersion of C‐CNT nanowires determine the mechanical and electrical properties. Moreover, the rheological behavior of C‐CNT inks explains their coating and printing characteristics. By controlling shaking time, the electrical conductivity of the C‐CNT films with only 9 wt.% of SWCNTs from 0.9 to 102.4 S cm−1 are adjusted. the optimized C‐CNT ink is highly compatible with the conventional coating and printing processes on diverse substrates, thus finding potential applications in eco‐friendly, highly flexible, and stretchable electrodes is also demonstrated.
Funder
National Research Foundation of Korea
Ministry of Science and ICT, South Korea
Korea Meteorological Administration
Ministry of Education, Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献