Chemotherapy‐Enabled Colorectal Cancer Immunotherapy of Self‐Delivery Nano‐PROTACs by Inhibiting Tumor Glycolysis and Avoiding Adaptive Immune Resistance

Author:

Zhao Lin‐Ping1,Zheng Rong‐Rong2,Rao Xiao‐Na2,Huang Chu‐Yu2,Zhou Hang‐Yu1,Yu Xi‐Yong2,Jiang Xue‐Yan2,Li Shi‐Ying23ORCID

Affiliation:

1. Key Laboratory of Biological Targeting Diagnosis Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 510700 P. R. China

2. The Fifth Affiliated Hospital Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease the School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 P. R. China

3. Department of Pulmonary and Critical Care Medicine Zhujiang Hospital Southern Medical University Guangzhou 510280 P. R. China

Abstract

AbstractThe chemo‐regulation abilities of chemotherapeutic medications are appealing to address the low immunogenicity, immunosuppressive lactate microenvironment, and adaptive immune resistance of colorectal cancer. In this work, the proteolysis targeting chimera (PROTAC) of BRD4 (dBET57) is found to downregulate colorectal cancer glycolysis through the transcription inhibition of c‐Myc, which also inhibits the expression of programmed death ligand 1 (PD‐L1) to reverse immune evasion and avoid adaptive immune resistance. Based on this, self‐delivery nano‐PROTACs (designated as DdLD NPs) are further fabricated by the self‐assembly of doxorubicin (DOX) and dBET57 with the assistance of DSPE‐PEG2000. DdLD NPs can improve the stability, intracellular delivery, and tumor targeting accumulation of DOX and dBET57. Meanwhile, the chemotherapeutic effect of DdLD NPs can efficiently destroy colorectal cancer cells to trigger a robust immunogenic cell death (ICD). More importantly, the chemo‐regulation effects of DdLD NPs can inhibit colorectal cancer glycolysis to reduce the lactate production, and downregulate the PD‐L1 expression through BRD4 degradation. Taking advantages of the chemotherapy and chemo‐regulation ability, DdLD NPs systemically activated the antitumor immunity to suppress the primary and metastatic colorectal cancer progression without inducing any systemic side effects. Such self‐delivery nano‐PROTACs may provide a new insight for chemotherapy‐enabled tumor immunotherapy.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3