Mechanically Robust and Room Temperature Self‐Healing Ionogel Based on Ionic Liquid Inhibited Reversible Reaction of Disulfide Bonds

Author:

Yang Lei1,Sun Lijie1,Huang Hongfei1,Zhu Wenfan1,Wang Yihan1,Wu Zekai1,Neisiany Rasoul Esmaeely2,Gu Shijia1,You Zhengwei1ORCID

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society) Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine 2999 North Renmin Road Shanghai 201620 P. R. China

2. Department of Materials and Polymer Engineering Faculty of Engineering Hakim Sabzevari University Sabzevar 9617976487 Iran

Abstract

AbstractAlthough highly desired, it is difficult to develop mechanically robust and room temperature self‐healing ionic liquid‐based gels (ionogels), which are very promising for next‐generation stretchable electronic devices. Herein, it is discovered that the ionic liquid significantly reduces the reversible reaction rate of disulfide bonds without altering its thermodynamic equilibrium constant via small molecule model reaction and activation energy evolution of the dissociation of the dynamic network. This inhibitory effect would reduce the dissociated units in the dynamic polymeric network, beneficial for the strength of the ionogel. Furthermore, aromatic disulfide bonds with high reversibility are embedded in the polyurethane to endow the ionogel with superior room temperature self‐healing performance. Isocyanates with an asymmetric alicyclic structure are chosen to provide optimal exchange efficiencies for the embedded disulfide bonds relative to aromatic and linear aliphatic. Carbonyl‐rich poly(ethylene‐glycol‐adipate) diols are selected as soft segments to provide sufficient interaction sites for ionic liquids to endow the ionogel with high transparency, stretchability, and elasticity. Finally, a self‐healing ionogel with a tensile strength of 1.65 ± 0.08 MPa is successfully developed, which is significantly higher than all the reported transparent room temperature self‐healing ionogel and its application in a 3D printed stretchable numeric keyboard is exemplified.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3