Highly Conductive Polyoxanorbornene‐Based Polymer Electrolyte for Lithium‐Metal Batteries

Author:

An So Young1ORCID,Wu Xinsheng2ORCID,Zhao Yuqi2ORCID,Liu Tong1ORCID,Yin Rongguan1ORCID,Ahn Jung Hyun3ORCID,Walker Lynn M.3ORCID,Whitacre Jay F.24ORCID,Matyjaszewski Krzysztof1ORCID

Affiliation:

1. Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA

2. Department of Materials Science and Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA

3. Department of Chemical Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA

4. Scott Institute for Energy Innovation Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA

Abstract

AbstractThis present study illustrates the synthesis and preparation of polyoxanorbornene‐based bottlebrush polymers with poly(ethylene oxide) (PEO) side chains by ring‐opening metathesis polymerization for solid polymer electrolytes (SPE). In addition to the conductive PEO side chains, the polyoxanorbornene backbones may act as another ion conductor to further promote Li‐ion movement within the SPE matrix. These results suggest that these bottlebrush polymer electrolytes provide impressively high ionic conductivity of 7.12 × 10−4 S cm−1 at room temperature and excellent electrochemical performance, including high‐rate capabilities and cycling stability when paired with a Li metal anode and a LiFePO4 cathode. The new design paradigm, which has dual ionic conductive pathways, provides an unexplored avenue for inventing new SPEs and emphasizes the importance of molecular engineering to develop highly stable and conductive polymer electrolytes for lithium‐metal batteries (LMB).

Funder

Carnegie Mellon University

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

U.S. Department of Energy

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3