Ab Initio Study of Novel Phase‐Change Heterostructures

Author:

Piombo Riccardo1,Ritarossi Simone1,Mazzarello Riccardo1ORCID

Affiliation:

1. Dipartimento di Fisica Università di Roma “La Sapienza” 00185 Rome Italy

Abstract

AbstractNeuromorphic devices constitute a novel approach to computing that takes inspiration from the brain to unify the processing and storage units. Memories based on phase‐change materials (PCMs) are potential candidates for such devices due to their non‐volatility and excellent scalability, however their use is hindered by their conductance variability and temporal drift in resistance. Recently, it has been shown that the utilization of phase‐change heterostructures consisting of nanolayers of the Sb2Te3 PCM interleaved with a transition‐metal dichalcogenide, acting as a confinement material, strongly mitigates these problems. In this work, superlattice heterostructures made of TiTe2 and two prototypical PCMs, respectively GeTe and Ge2Sb2Te5 are considered. By performing ab initio molecular dynamics simulations, it is shown that it is possible to switch the PCMs without destroying the superlattice structure and without diffusion of the atoms of the PCM across the TiTe2 nanolayers. In particular, the model containing Ge2Sb2Te5 shows weak coupling between the two materials during the switching process, which, combined with the high stability of the amorphous state of Ge2Sb2Te5, makes it a very promising candidate for neuromorphic computing applications.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3