CircTmeff1 Promotes Muscle Atrophy by Interacting with TDP‐43 and Encoding A Novel TMEFF1‐339aa Protein

Author:

Chen Rui12,Yang Tingting12,Jin Bing12,Xu Wanru12,Yan Yuwei12,Wood Nathanael3,Lehmann H. Immo4,Wang Siqi12,Zhu Xiaolan12,Yuan Weilin12,Chen Hongjian12,Liu Zhengyu12,Li Guoping4,Bowen T. Scott3,Li Jin12,Xiao Junjie12ORCID

Affiliation:

1. Institute of Geriatrics (Shanghai University) Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China

2. Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Sciences Shanghai University Shanghai 200444 China

3. School of Biomedical Sciences Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK

4. Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA

Abstract

AbstractSkeletal muscle atrophy is a common clinical feature of many acute and chronic conditions. Circular RNAs (circRNAs) are covalently closed RNA transcripts that are involved in various physiological and pathological processes, but their role in muscle atrophy remains unknown. Global circRNA expression profiling indicated that circRNAs are involved in the pathophysiological processes of muscle atrophy. circTmeff1 is identified as a potential circRNA candidate that influences muscle atrophy. It is further identified that circTmeff1 is highly expressed in multiple types of muscle atrophy in vivo and in vitro. Moreover, the overexpression of circTmeff1 triggers muscle atrophy in vitro and in vivo, while the knockdown of circTmeff1 expression rescues muscle atrophy in vitro and in vivo. In particular, the knockdown of circTmeff1 expression partially rescues muscle mass in mice during established atrophic settings. Mechanistically, circTmeff1 directly interacts with TAR DNA‐binding protein 43 (TDP‐43) and promotes aggregation of TDP‐43 in mitochondria, which triggers the release of mitochondrial DNA (mtDNA) into cytosol and activation of the cyclic GMP‐AMP synthase (cGAS)/ stimulator of interferon genes (STING) pathway. Unexpectedly, TMEFF1‐339aa is identified as a novel protein encoded by circTmeff1 that mediates its pro‐atrophic effects. Collectively, the inhibition of circTmeff1 represents a novel therapeutic approach for multiple types of skeletal muscle atrophy.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3