Hybrid Ginseng‐derived Extracellular Vesicles‐Like Particles with Autologous Tumor Cell Membrane for Personalized Vaccination to Inhibit Tumor Recurrence and Metastasis

Author:

Wang Haoran12ORCID,Mu Jiankang12,Chen Yexing2,Liu Yali2,Li Xianghui3,Li Hao4,Cao Peng12

Affiliation:

1. Jiangsu Provincial Medical Innovation Center Affiliated Hospital of Integrated Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine Nanjing 210028 China

2. School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China

3. Department of Dermatology The First Affiliated Hospital of Guangxi Medical University Nanning 530021 China

4. Chinatalentgroup (CTG Group) Beijing 100020 China

Abstract

AbstractPersonalized cancer vaccines based on resected tumors from patients is promising to address tumor heterogeneity to inhibit tumor recurrence or metastasis. However, it remains challenge to elicit immune activation due to the weak immunogenicity of autologous tumor antigens. Here, a hybrid membrane cancer vaccine is successfully constructed by membrane fusion to enhance adaptive immune response and amplify personalized immunotherapy, which formed a codelivery system for autologous tumor antigens and immune adjuvants. Briefly, the functional hybrid vesicles (HM‐NPs) are formed by hybridizing ginseng‐derived extracellular vesicles‐like particles (G‐EVLPs) with the membrane originated from the resected autologous tumors. The introduction of G‐EVLPs can enhance the phagocytosis of autologous tumor antigens by dendritic cells (DCs) and facilitate DCs maturation through TLR4, ultimately activating tumor‐specific cytotoxic T lymphocytes (CTLs). HM‐NPs can indeed strengthen specific immune responses to suppress tumors recurrence and metastasis including subcutaneous tumors and orthotopic tumors. Furthermore, a long‐term immune protection can be obtained after vaccinating with HM‐NPs, and prolonging the survival of animals. Overall, this personalized hybrid autologous tumor vaccine based on G‐EVLPs provides the possibility of mitigating tumor recurrence and metastasis after surgery while maintaining good biocompatibility.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Key Technologies Research and Development Program

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3