Harnessing Mechanical Stress with Viscoelastic Biomaterials for Periodontal Ligament Regeneration

Author:

Zhang Jiu‐Jiu1,Li Xuan1,Tian Yi1,Zou Jie‐Kang1,Gan Dian1,Deng Dao‐Kun1,Jiao Chen1,Yin Yuan1,Tian Bei‐Min1,Wu Rui‐Xin1,Chen Fa‐Ming1,He Xiao‐Tao1ORCID

Affiliation:

1. State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University Xi'an 710032 China

Abstract

AbstractThe viscoelasticity of mechanically sensitive tissues such as periodontal ligaments (PDLs) is key in maintaining mechanical homeostasis. Unfortunately, PDLs easily lose viscoelasticity (e.g., stress relaxation) during periodontitis or dental trauma, which disrupt cell–extracellular matrix (ECM) interactions and accelerates tissue damage. Here, Pluronic F127 diacrylate (F127DA) hydrogels with PDL‐matched stress relaxation rates and high elastic moduli are developed. The hydrogel viscoelasticity is modulated without chemical cross‐linking by controlling precursor concentrations. Under cytomechanical loading, F127DA hydrogels with fast relaxation rates significantly improved the fibrogenic differentiation potential of PDL stem cells (PDLSCs), while cells cultured on F127DA hydrogels with various stress relaxation rates exhibited similar fibrogenic differentiation potentials with limited cell spreading and traction forces under static conditions. Mechanically, faster‐relaxing F127DA hydrogels leveraged cytomechanical loading to activate PDLSC mechanotransduction by upregulating integrin–focal adhesion kinase pathway and thus cytoskeletal rearrangement, reinforcing cell–ECM interactions. In vivo experiments confirm that faster‐relaxing F127DA hydrogels significantly promoted PDL repair and reduced abnormal healing (e.g., root resorption and ankyloses) in delayed replantation of avulsed teeth. This study firstly investigated how matrix nonlinear viscoelasticity influences the fibrogenesis of PDLSCs under mechanical stimuli, and it reveals the underlying mechanobiology, which suggests novel strategies for PDL regeneration.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3