Deep Learning Enhanced Volumetric Photoacoustic Imaging of Vasculature in Human

Author:

Zheng Wenhan1,Zhang Huijuan1,Huang Chuqin1,Shijo Varun12,Xu Chenhan2,Xu Wenyao2,Xia Jun12ORCID

Affiliation:

1. Department of Biomedical Engineering University at Buffalo The State University of New York Buffalo New York NY 14260 USA

2. Department of Computer Science and Engineering University at Buffalo The State University of New York Buffalo New York NY 14260 USA

Abstract

AbstractThe development of high‐performance imaging processing algorithms is a core area of photoacoustic tomography. While various deep learning based image processing techniques have been developed in the area, their applications in 3D imaging are still limited due to challenges in computational cost and memory allocation. To address those limitations, this work implements a 3D fully‐dense (3DFD) U‐net to linear array based photoacoustic tomography and utilizes volumetric simulation and mixed precision training to increase efficiency and training size. Through numerical simulation, phantom imaging, and in vivo experiments, this work demonstrates that the trained network restores the true object size, reduces the noise level and artifacts, improves the contrast at deep regions, and reveals vessels subject to limited view distortion. With these enhancements, 3DFD U‐net successfully produces clear 3D vascular images of the palm, arms, breasts, and feet of human subjects. These enhanced vascular images offer improved capabilities for biometric identification, foot ulcer evaluation, and breast cancer imaging. These results indicate that the new algorithm will have a significant impact on preclinical and clinical photoacoustic tomography.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3