Recent Advances in Layered Metal‐Oxide Cathodes for Application in Potassium‐Ion Batteries

Author:

Nathan Muthu Gnana Theresa1,Yu Hakgyoon1,Kim Guk‐Tae1,Kim Jin‐Hee2,Cho Jung Sang3,Kim Jeha1,Kim Jae‐Kwang1ORCID

Affiliation:

1. Department of Energy Convergence Engineering Cheongju University Cheongju Chungbuk 28503 Republic of Korea

2. Department of Biomedical Laboratory Science College of Health Science Cheongju University Cheongju Chungbuk 28503 Republic of Korea

3. Department of Engineering Chemistry Chungbuk National University Chungbuk 28644 Republic of Korea

Abstract

AbstractTo meet future energy demands, currently, dominant lithium‐ion batteries (LIBs) must be supported by abundant and cost‐effective alternative battery materials. Potassium‐ion batteries (KIBs) are promising alternatives to LIBs because KIB materials are abundant and because KIBs exhibit intercalation chemistry like LIBs and comparable energy densities. In pursuit of superior batteries, designing and developing highly efficient electrode materials are indispensable for meeting the requirements of large‐scale energy storage applications. Despite using graphite anodes in KIBs instead of in sodium‐ion batteries (NIBs), developing suitable KIB cathodes is extremely challenging and has attracted considerable research attention. Among the various cathode materials, layered metal oxides have attracted considerable interest owing to their tunable stoichiometry, high specific capacity, and structural stability. Therefore, the recent progress in layered metal‐oxide cathodes is comprehensively reviewed for application to KIBs and the fundamental material design, classification, phase transitions, preparation techniques, and corresponding electrochemical performance of KIBs are presented. Furthermore, the challenges and opportunities associated with developing layered oxide cathode materials are presented for practical application to KIBs.

Funder

National Research Foundation of Korea

Cheongju University

Publisher

Wiley

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3