Oxidation States Regulation of Cobalt Active Sites through Crystal Surface Engineering for Enhanced Polysulfide Conversion in Lithium–Sulfur Batteries

Author:

Xiao Rujian1,Luo Dan12,Wang Jiayi1,Lu Han3,Ma Heng4,Akinoglu Eser Metin3,Jin Mingliang13,Wang Xin13,Zhang Yongguang34,Chen Zhongwei2ORCID

Affiliation:

1. South China Academy of Advanced Optoelectronics School of Information and Optoelectronic Science and Engineering South China Normal University Guangdong 510006 China

2. Department of Chemical Engineering University of Waterloo Waterloo ON N2L 3G1 Canada

3. International Academy of Optoelectronics at Zhaoqing South China Normal University Zhaoqing 526060 China

4. School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China

Abstract

AbstractIn this work, unique Co3O4/N‐doped reduced graphene oxide (Co3O4/N‐rGO) composites as favorable sulfur immobilizers and promoters for lithium–sulfur (Li–S) batteries are developed. The prepared Co3O4 nanopolyhedrons (Co3O4‐NP) and Co3O4 nanocubes mainly expose (112) and (001) surfaces, respectively, with different atomic configurations of Co2+/Co3+ sites. Experiments and theoretical calculations confirm that the octahedral coordination Co3+ (Co3+Oh) sites with different oxidation states from tetrahedral coordination Co2+ sites optimize the adsorption and catalytic conversion of lithium polysulfides. Specially, the Co3O4‐NP crystals loaded on N‐rGO expose (112) planes with ample Co3+Oh active sites, exhibiting stronger adsorbability and superior catalytic activity for polysulfides, thus inhibiting the shuttle effect. Therefore, the S@Co3O4‐NP/N‐rGO cathodes deliver excellent electrochemical properties, for example, stable cyclability at 1 C with a low capacity decay rate of 0.058% over 500 cycles, superb rate capability up to 3 C, and high areal capacity of 4.1 mAh cm−2. This catalyst's design incorporating crystal surface engineering and oxidation state regulation strategies also provides new approaches for addressing the complicated issues of Li–S batteries.

Funder

Guangdong Science and Technology Department

China Postdoctoral Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3